9.4 visualStudio 2022 配置 cuda 和 torch (c++)

news/2025/1/10 6:47:37 标签: visual studio, 深度学习, ide

一、配置torch

1.Libtorch下载

        该内容看了【Libtorch 一】libtorch+win10环境配置_vsixtorch-CSDN博客的博客,作为笔记用。我自己搭建后可以正常运行。

        下载地址为windows系统下各种LibTorch下载地址_libtorch 百度云-CSDN博客

        下载解压后的目录为:

2.vs 2022配置Torch

首先,创建一个新的项目和一个新的cpp文件。

然后,在界面选择release和X64,如下图所示:

在属性管理器中【添加新项目属性表】

打开项目属性,在【附加包含目录】中添加

E:\Environmentc\libtorch\include

E:\Environmentc\libtorch\include\torch\csrc\api\include

在【附加库目录】中添加

E:\Environmentc\libtorch\lib

在【附加依赖项】中添加D:\libtorch-win-shared-with-deps-1.8.0+cu111\libtorch\lib文件夹下所有的 *.lib文件。

asmjit.lib
c10.lib
c10d.lib
c10_cuda.lib
caffe2_detectron_ops_gpu.lib
caffe2_module_test_dynamic.lib
caffe2_nvrtc.lib
clog.lib
cpuinfo.lib
dnnl.lib
fbgemm.lib
fbjni.lib
gloo.lib
gloo_cuda.lib
libprotobuf-lite.lib
libprotobuf.lib
libprotoc.lib
mkldnn.lib
pthreadpool.lib
pytorch_jni.lib
torch.lib
torch_cpu.lib
torch_cuda.lib
XNNPACK.lib

完成上述配置后,在计算机【环境变量–系统变量】中添加

E:\Environmentc\libtorch\lib

E:\Environmentc\libtorch\bin

此外,libtorc加载GPU模型时,还需在打开工程项目属性页配置CUDA命令行:

/INCLUDE:"?ignore_this_library_placeholder@@YAHXZ" 

此时完成所有配置。测试代码如下:

#include <torch/torch.h>
//#include <cuda.h>
//#include <cuda_runtime.h>
//#include "device_launch_parameters.h"
#include <iostream>

int main() {
	torch::Tensor tensor = torch::rand({ 2, 3 });
	if (torch::cuda::is_available()) {
		std::cout << "CUDA is available! Training on GPU" << std::endl;

		/*int devCount;
		cudaGetDeviceCount(&devCount);
		std::cout << devCount << std::endl;*/
		auto tensor_cuda = tensor.cuda();
		std::cout << tensor_cuda << std::endl;
	}
	else
	{
		std::cout << "CUDA is not available! Training on CPU" << std::endl;
		std::cout << tensor << std::endl;
	}

	std::cin.get();
}

若出现由于找不到c10.dll(或其他libtorch/lib中的.dll动态库),无法继续执行代码的报错,则作以下修改:

在属性界面的 调试=>环境 里添加libtorch动态库的路径:

PATH=D:\Code_Lib\libtorch\lib;%PATH%

至此,torch配置完成。

二、配置cuda

        该内容看了Windows10+VisualStudio2022+CUDA11.7环境配置_vs配置cuda-CSDN博客的博客,作为笔记用,本人搭建后可以运行。

右键项目→属性→ 配置属性→ VC++目录→ 包含目录,添加以下目录:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include

→ 库目录,添加以下目录:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib\x64

右键项目→ 属性→ 配置属性→ 链接器→ 常规→ 附加库目录,添加以下目录:

\$(CUDA_PATH_V11_7)\lib$(Platform)

(查看环境变量改变CUDA_PATH_V11_7,v11_7指的安装的cuda版本)

右键项目→ 属性→ 配置属性→ 链接器→ 输入→ 附加依赖项,添加以下库:

cublas.lib
cuda.lib
cudadevrt.lib
cudart.lib
cudart_static.lib
cufft.lib
cufftw.lib
curand.lib
cusolver.lib
cusparse.lib
nppc.lib
nppial.lib
nppicc.lib
nppidei.lib
nppif.lib
nppig.lib
nppim.lib
nppist.lib
nppisu.lib
nppitc.lib
npps.lib
nvblas.lib
nvml.lib
nvrtc.lib
OpenCL.lib

测试程序如下:

#include <iostream>
#include <cuda_runtime.h>
#include <cublas_v2.h>
 
const int N = 3;  // 矩阵大小
 
int main() {
    // 初始化CUBLAS库
    cublasHandle_t handle;
    cublasCreate(&handle);
 
    // 定义矩阵大小
    int lda = N;
    int ldb = N;
    int ldc = N;
 
    // 分配内存并初始化矩阵
    float A[N * N] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    float B[N * N] = { 9, 8, 7, 6, 5, 4, 3, 2, 1 };
    float C[N * N] = { 0 };
 
    // 在GPU上分配内存并将矩阵传输到GPU
    float* d_A, * d_B, * d_C;
    cudaMalloc((void**)&d_A, N * N * sizeof(float));
    cudaMalloc((void**)&d_B, N * N * sizeof(float));
    cudaMalloc((void**)&d_C, N * N * sizeof(float));
 
    cudaMemcpy(d_A, A, N * N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, B, N * N * sizeof(float), cudaMemcpyHostToDevice);
 
    // 执行矩阵相乘
    float alpha = 1.0f;
    float beta = 0.0f;
    cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, d_A, lda, d_B, ldb, &beta, d_C, ldc);
 
    // 将结果从GPU传回CPU
    cudaMemcpy(C, d_C, N * N * sizeof(float), cudaMemcpyDeviceToHost);
 
    // 打印结果
    std::cout << "Matrix C:" << std::endl;
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            std::cout << C[i * N + j] << " ";
        }
        std::cout << std::endl;
    }
 
    // 清理内存
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);
 
    // 销毁CUBLAS句柄
    cublasDestroy(handle);
 
    return 0;
}

至此,cuda环境安装完成。


http://www.niftyadmin.cn/n/5818298.html

相关文章

npm i 报错

nodejs中 使用npm install命令时报错 npm err! file C: \user\admin\package.json_package.json 里缺少 description 和 repository 两个n字段。-CSDN博客

【软考】软件设计师

「学习路线」&#xff08;推荐该顺序学习&#xff0c;按照先易后难排序&#xff09; 1、上午题—计算机系统&#xff08;5~6分&#xff09;[1.8; ] 2、上午题—程序设计语言&#xff08;固定6分&#xff09; 3、下午题—试题一&#xff08;15分&#xff09; 4、上午题—知识产权…

培训机构Day23

今天开了javaee&#xff0c;这算是java最重要的部分了&#xff0c;这得好好学。 知识点&#xff1a; JavaEE > JakartaEE Java&#xff1a; 1。Java SE&#xff1a;标准版。standard edition。 -----2。Java EE&#xff1a;Enterprise Edition&#xff0c;多出一些包和库。…

NLP中常见的分词算法(BPE、WordPiece、Unigram、SentencePiece)

文章目录 一、基本概念二、传统分词方法2.1 古典分词方法2.2 拆分为单个字符 三、基于子词的分词方法&#xff08;Subword Tokenization&#xff09;3.1 主要思想3.2 主流的 Subword 算法3.2 Subword 与 传统分词方法的比较 四、Byte Pair Encoding (BPE)4.1 主要思想4.2 算法过…

git相关操作笔记

git相关操作笔记 1. git init git init 是一个 Git 命令&#xff0c;用于初始化一个新的 Git 仓库。执行该命令后&#xff0c;Git 会在当前目录创建一个 .git 子目录&#xff0c;这是 Git 用来存储所有版本控制信息的地方。 使用方法如下&#xff1a; &#xff08;1&#xff…

SQLite PRAGMA

SQLite的PRAGMA命令是一种特殊的命令&#xff0c;用于在SQLite环境中控制各种环境变量和状态标志。PRAGMA值可以被读取&#xff0c;也可以根据需求进行设置【0†source】。 PRAGMA命令的语法格式如下&#xff1a; 要查询当前的PRAGMA值&#xff0c;只需提供该PRAGMA的名字&am…

HAMi + prometheus-k8s + grafana实现vgpu虚拟化监控

最近长沙跑了半个多月&#xff0c;跟甲方客户对了下项目指标&#xff0c;许久没更新 回来后继续研究如何实现 grafana实现HAMi vgpu虚拟化监控&#xff0c;毕竟合同里写了需要体现gpu资源限制和算力共享以及体现算力卡资源共享监控 先说下为啥要用HAMi吧&#xff0c; 一个重要原…

双软企业优惠政策

双软企业如何享受“两免三减半”政策 双软企业的两免三减半是指&#xff1a;从企业盈利年度开始算的5年时间内&#xff0c;所得税前两年全免&#xff0c;后三年减半缴纳&#xff0c;双软包括软件产品评估和软件企业评估&#xff0c;申报条件如下&#xff1a; 软件产品评估 需满…